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It is well established that shear cracks in rock (faults) obey linear displacementelength scaling and thus
have scale invariant driving stresses. Several recent papers have claimed that for opening mode cracks in
rock (joints, veins, and dikes) displacement obeys square root scaling with fracture length. This is
a fundamentally different mode of behavior, because, unlike shear cracks, opening mode cracks would
then be unstable under constant stress boundary conditions. Here the same data are reexamined and it is
found, to the contrary, that for opening mode cracks in rock, fracture toughness Kc scales with OL and
hence displacement scales linearly with L. The conflicting view resulted from data misinterpretation. This
resolves the discrepancy between the behavior of shear and opening mode cracks in rock.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The basic scaling law for cracks relates the displacement of the
crackwallsd to crack length L through the stress drop (driving stress)
Ds with a linear relation. In the case of an elastic crack this is:

dmax ¼ Ds
2
�
1� n2

�
E

L: (1)

If cracks grow under constant stress loading, we would expect
Ds to be scale independent and dmax to scale linearly with L.
This is indeed the scaling relation found for shear cracks, i.e.
faults and earthquakes (for a recent review, see Scholz, 2007).
Shear cracks in rock are stable under constant stress loading
because fracture energy Gc increases linearly with L, hence
there is no Griffith-type instability (Cowie and Scholz, 1992). In
contrast, for opening mode (tensile) cracks, i.e., joints, veins,
and dikes, Olson (2003) and Schultz et al. (2008a) have argued
that dmax scales as OL.

In the linear elastic fracture mechanics (LEFM) formulation (e.g.,
Lawn and Wilshaw, 1975), the criterion for crack propagation is:

Kc ¼ Ds

ffiffiffiffiffiffiffi
L
2p

r
(2)

where Kc is the fracture toughness, which is often assumed in LEFM
to be a material constant. Combining (1) and (2) gives
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so that the OL scaling can be interpreted as meaning that Kc is scale
invariant. In such a case, Eq. (2) shows that the equilibrium driving
stress of the crack must fall as the crack grows. Such cracks would
be unstable under constant stress loading and therefore must be
assumed to grow under constant displacement boundary condi-
tions (e.g. Segall, 1984).

These results suggest that tensile and shear cracks behave in
fundamentally different ways. Why this should be is very
puzzling. The differences between shear and tensile cracks are
(a) they have different geometrical terms in their crack-tip stress
fields, and (b) the former supports residual friction between its
walls whereas the latter does not. Neither of these appear to
offer an explanation for this fundamental difference in behavior:
the friction of faults, for example, is differenced out in the Ds
term. This demands a re-examination of the scaling of joints,
dikes, and veins proposed by Olson (2003) and Schultz et al.
(2008a).
2. Reanalysis of the data

The observations relevant to this problem are shown in Fig. 1
(modified from Schultz et al., 2008a). There dmax is plotted vs. L
for various data sets of opening mode fractures. Each data set is fit
with a function dmax¼ COL, where
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Fig. 1. Compilation of data on joints, veins and dikes, from Schultz et al., 2008a. Fits to
OL scaling are in heavy lines. Large cross is Ship Rock master dike.

Table 1
Calculations of Kc.

Dataset C, M1/2 E,a GPa L, Log-med, m Kc, MPam1/2

Culpepper 6.2� 10�4 20 0.7 7.6
Florence Lake 6.8� 10�4 40 0.8 16.8
Ethiopia 8.8� 10�2 b 73 2000 3682
Moros 2.5� 10�3 20 0.3 31
Ledeve 1� 10�2 20 5 124
Ship Rock e 19 2900 850

a Elastic moduli average low pressure values from Birch (1966).
b From Schultz et al. (2008b).

Fig. 2. Calculated values of Kc plotted vs. logarithmic median length for each dataset in
Fig. 1. Kc was calculated from Eq. (4) using values of C given by Olson (2003) and Schultz
et al. (2008a,b) except for the Ship Rock dike, which was calculated using Eq. (3).
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C ¼ Kc
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�
E

ffiffiffiffiffiffiffiffiffi
p=8

p : (4)

In this interpretation the value of C varies by more than three
orders of magnitude and tends to progressively increase with the
length range of each dataset. This great variation in C cannot be due
to variation of the elastic constants, which do not vary bymore than
about a factor of two or three between different rock types. It must
reflect large variations of Kc between data sets.

Olson (2003) recognized this problem, and citing Pollard (1987),
noted that the km scale Ship Rock dikes were associated with 10 m
wide joint clusters that constitute brittle process zones. Because
fracture energy Gc represents the sum of the surface energy
expended in creating all the cracks in the process zone, this can be
expected to result in amuch greater fracture energy Gc and hence Kc
for those dikes than for the smaller scale veins and joints. He did not
follow this line of inquiry further. Pollard and Segall (1987), dis-
cussing the same dike family, derived an expression for the process
zone which shows that the process zone size (and hence Gc) scales
linearly with L. Available data support this. At the laboratory (cm)
scale, Mode I fracture propagation in rock is accompanied by the
development of a mm scale process zone consisting of a volumetric
region of microcracking surrounding the fracture tip (Peng, 1975;
Swanson, 1987). The size of the process zone increases with frac-
ture length, resulting in a corresponding increase of Kc andGc with L
(Labuz et al., 1985, 1987; Peck et al., 1985a,b). Segall and Pollard
(1983) noted that the terminations of joints of length 1e10 m in
the Sierra Nevada consist of cm scale arrays of sub-parallel cracks,
suggesting process zones intermediate in scale to those just
described. Engvik et al. (2005, 2009) identified mineralized haloes
that surround dikes with their process zones, and showed that they
scale linearly with dike displacement.

These observations suggest that Kc scales with L, which
contradicts the interpretation shown in Fig. 1. To evaluate this, an
average Kc was calculated for each data set in Fig.1, using Eq. (4), the
published C value in Olson (2003) and Schultz et al. (2008a) and
appropriate elastic constants for the host rocks. This procedure was
not followed for the Ship Rock data set because that consists of
echelon segments of a single long dike, which, for reasons given
later, are not appropriate for this analysis. In the Ship Rock case Kc
was calculated for the entire dike using Eq. (3), with L¼ 2900 m and
dmax¼ 3.9 m (large cross in Fig. 1; dmax is the corrected value from
Delaney and Pollard (1981)) and an average value of E for the shale
host rock of 19 GPa (Birch, 1966). The results are given vs. the log-
arithmic mean L for each data set in Table 1 and Fig. 2.

Fig. 2 makes clear that Kc scales with L. The fit to the data yields
Kc¼ 26.8L.54, R2¼ 0.87. It thus appears that Kcf

ffiffiffi
L

p
. Inserting this

into Eq. (3) indicates that dmaxfL, which implies that the correct
interpretation of the data in Fig.1 is scaling along the dotted lines of
constant dmax/L rather than the solid square root lines. From that
we see that most of the data lie in the range dmax/L¼ 10�2e10�3.

These results are consistent with the earlier findings of Vermilye
and Scholz (1995), who reported linear scaling for veins and dikes
over about seven orders of magnitude in length scale, with dmax/L
ratios in the range 10�2e10�3. They also found that the dmax/L ratios
of segmented veins were systematically much smaller than those of
isolated single segment veins. They attributed this difference to the
effect of elastic stress interactions between segments, following the
analysis of Pollard et al. (1982).

Olson (2003) reinterpreted the Vermilye and Scholz data for two
localities: Culpepper Quarry and Florence Lake. He lumped together
the single and multiple segment veins in both cases and fitted each
to a single curve with exponentw 1/2. Examination of his Fig. 5
shows that the single segment and multiple segment data in each
case occupy different populations, with the multiple segment veins
having distinctly smaller aspect ratios (these two populations of
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different aspect ratio are also clear in his Fig. 4, although there hedid
not distinguish in the figure between single and multiple segment
veins). Because the longer veins are the multiple segment ones, this
conspires to skew the fit to have a lower exponent. Vermilye and
Scholz emphasized that the multiple segment veins are not self-
similar to the single segment ones (see their Fig. 9). They are thus
qualitatively different objects and one cannot define a scaling law
that includes both.

In his second case, Olson analyzed individual segments of a long
dike near Ship Rock, New Mexico studied by Delaney and Pollard
(1981). The latter interpreted these segments as being near
surface echelon twist bifurcations (lances) resulting from mixed
mode Iþ III fracture propagation e an interpretation later studied
numerically by Pollard et al. (1982) and experimentally by Cooke
and Pollard (1996). This interpretation and the original data
suggest that the dmax of each segment simply reflects the local d of
the underlying master dike. On the other hand, the segment length
is determined by an instability in mixed mode fracture propagation
with spacing proportional the ratio KI/KIII times the process zone
size (Pons and Karma, 2010) and which is primarily a function of
the twist angle (Lin et al., 2010). Thus in this case dmax and L are
independent of one another and there should not be any mean-
ingful scaling law relating them (in trying to do so, Olson obtained
a fit with a poor correlation coefficient of R2¼ 0.55). This is the
reason we did not analyze these data but only the data for the
master dike. This also explains why these data are an outlier pop-
ulation in Fig. 1. They should not be interpreted with Eq. (2) or (3).

Thus, the case made by Olson (2003) for OL scaling was based on
misinterpretations of the data and the apparent goodness of fit of
the solid lines in Fig. 1 is illusory. Schultz et al. (2008a) added some
new data sets: the only one with a broad enough length span to be
discussed is that of the Ethiopian dikes, which Schultz et al. (2008b)
fit with an exponent 0.48 and R2¼ 0.66. These were multi-
segmented dikes, which brings up another problem. Vermilye and
Scholz (1995) noted that their segmented veins fit a square root
curve marginally as well as a linear one, and attributed this to
interactions between segments as shown in the numerical analysis
of Pollard et al. (1982). Olson (2003) analyzed this effect in more
detail. He showed that the effect of segment interaction is to
produce a non-linear reduction of aperture that increases with
length e the effect being greater with greater interaction (which is
a function of segment overlap and separation). He noted that if one
were to fit this with a power law, as the interaction increases it
would yield exponents e progressively smaller than one. He stated:
“The wide range in values for e suggests that there is no unique
power law exponent that describes multi-segment aperture-to-
length scaling.” The fit to the Ethiopian dikes is just such a fit, and as
such does not impact our conclusions on the scaling on non-
interacting opening mode cracks.

3. Conclusions

In conclusion, for opening mode fractures, Kcf
ffiffiffi
L

p
, dmaxfL, and

as a consequence GcfL. These results are in agreement with the
argument of Cowie and Scholz (1992) to explain the linear scaling
of dmax with L for faults. In the framework of the Dugda-
leeBarenblatt model, they argued that the breakdown zone length
s scales with L, hence fracture energy Gc also scales linearly with L.
Because Gc¼ Kc

2/E, Kc scales with OL. The proportionality of the fault
process zone with length was verified by Vermilye and Scholz
(1998). The linear scaling between halo width and dike aperture
observed by Engvik et al. (2005) is consistent with this.

Opening and shear mode cracks in rock thus behave in the same
manner. The primary difference is that the dmax/L ratio and hence
Ds for shear cracks is about 10 times greater than for tension cracks.
A simplemanifestation of this is that rock is about 10 times stronger
in compression than tension.
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